Dr Elisa M Sala
School of Electrical and Electronic Engineering
Research Fellow
Semiconductor Materials and Devices Research Group


+44 114 222 5212
Full contact details
School of Electrical and Electronic Engineering
- Qualifications
-
I graduated in Solid State Physics at the University of Milano-Bicocca (Italy) in 2012.
In 2018 I earned my PhD in Solid State Physics at the Technical University of Berlin (Germany), under the supervision of Prof. D. Bimberg, with a thesis entitled “Growth and characterization of antimony-based quantum dots in GaP matrix for nanomemories”.
- Research interests
-
In year 2012 she carried out experimental training on MBE (Molecular Beam Epitaxy) growth and characterization of III-V semiconductor nanostructures at L-NESS, Laboratory for Nanostructure Epitaxy and Spintronics on Silicon (Como, Italy), as part of her master’s degree.
In 2013 she was enrolled in a PhD program within the project HOFUS (Hoch-Funktionale-Speicher – high functional memory architecture) in Bimberg’s group, funded by the German Ministry for Education and Research (BMBF), aiming to demonstrate the feasibility of a quantum-dot-based memory as a novel memory architecture (also named QD-Flash).
During her PhD research studies, she investigated the MOVPE (Metal Organic Vapor Phase Epitaxy) growth, the optical and morphological characterization of a novel type of III-V semiconductor quantum dots, and their use as storage unit for the QD-Flash.
Her investigations demonstrated that the QD capture cross-section can be engineered by a fine-tuning of the growth parameters, which led to the storage record of 1 hour at room temperature for MOVPE-grown QDs so far, thus paving the way for an ultimate QD-based nanomemory.
In July 2018 she joined the EPSRC National Epitaxy Facility of the University of Ȧ as Research Associate in MOVPE.
Here she is dealing with the epitaxy and the characterization of various III-V semiconductor materials, in particular arsenides and phosphides, with a special focus on quantum dots as building blocks for novel optoelectronic devices.
- Publications
-
Journal articles
Preprints